Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.

نویسندگان

  • Meghan E McGee-Lawrence
  • Lomeli R Carpio
  • Elizabeth W Bradley
  • Amel Dudakovic
  • Jane B Lian
  • Andre J van Wijnen
  • Sanjeev Kakar
  • Wei Hsu
  • Jennifer J Westendorf
چکیده

Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2(+/-) mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2(+/-) mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in Axin2(-/-):Runx2(+/-) mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2(+/-) mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2(-/-):Runx2(+/-) calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2(+/-) and double mutant Axin2(-/-):Runx2(+/-) mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2(+/-) mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2(-/-) mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

Microarray analysis on Runx2-deficient mouse embryos reveals novel Runx2 functions and target genes during intramembranous and endochondral bone formation.

A major challenge in developmental biology is to correlate genome-wide gene expression modulations with developmental processes in vivo. In this study, we analyzed the role of Runx2 during intramembranous and endochondral bone development, by comparing gene expression profiles in 14.5 dpc wild-type and Runx2 (-/-) mice. A total of 1277, 606 and 492 transcripts were found to be significantly mod...

متن کامل

Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair.

Osteoblast-derived VEGF is important for bone development and postnatal bone homeostasis. Previous studies have demonstrated that VEGF affects bone repair and regeneration; however, the cellular mechanisms by which it works are not fully understood. In this study, we investigated the functions of osteoblast-derived VEGF in healing of a bone defect. The results indicate that osteoblast-derived V...

متن کامل

Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation.

Neogenin has been identified as a receptor for the neuronal axon guidance cues netrins and RGMs (repulsive guidance molecules). Here we provide evidence for neogenin in regulating endochondral bone development and BMP (bone morphogenetic protein) signaling. Neogenin-deficient mice were impaired in digit/limb development and endochondral ossification. BMP2 induction of Smad1/5/8 phosphorylation ...

متن کامل

XBP1S, a BMP2-inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor

We previously reported that transcription factor XBP1S binds to RUNX2 and enhances chondrocyte hypertrophy through acting as a cofactor of RUNX2. Herein, we report that XBP1S is a key downstream molecule of BMP2 and is required for BMP2-mediated chondrocyte differentiation. XBP1S is up-regulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern duri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2014